预测(样本外)

[1]:
%matplotlib inline
[2]:
import numpy as np
import matplotlib.pyplot as plt

import statsmodels.api as sm

plt.rc("figure", figsize=(16, 8))
plt.rc("font", size=14)

人工数据

[3]:
nsample = 50
sig = 0.25
x1 = np.linspace(0, 20, nsample)
X = np.column_stack((x1, np.sin(x1), (x1 - 5) ** 2))
X = sm.add_constant(X)
beta = [5.0, 0.5, 0.5, -0.02]
y_true = np.dot(X, beta)
y = y_true + sig * np.random.normal(size=nsample)

估计

[4]:
olsmod = sm.OLS(y, X)
olsres = olsmod.fit()
print(olsres.summary())
                            OLS Regression Results
==============================================================================
Dep. Variable:                      y   R-squared:                       0.980
Model:                            OLS   Adj. R-squared:                  0.979
Method:                 Least Squares   F-statistic:                     767.8
Date:                Thu, 03 Oct 2024   Prob (F-statistic):           2.80e-39
Time:                        15:50:37   Log-Likelihood:                -3.6609
No. Observations:                  50   AIC:                             15.32
Df Residuals:                      46   BIC:                             22.97
Df Model:                           3
Covariance Type:            nonrobust
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
const          5.0304      0.093     54.373      0.000       4.844       5.217
x1             0.5002      0.014     35.058      0.000       0.471       0.529
x2             0.5011      0.056      8.934      0.000       0.388       0.614
x3            -0.0201      0.001    -16.012      0.000      -0.023      -0.018
==============================================================================
Omnibus:                        2.155   Durbin-Watson:                   1.847
Prob(Omnibus):                  0.340   Jarque-Bera (JB):                2.068
Skew:                          -0.462   Prob(JB):                        0.356
Kurtosis:                       2.630   Cond. No.                         221.
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

样本内预测

[5]:
ypred = olsres.predict(X)
print(ypred)
[ 4.52892208  5.01052175  5.45275967  5.82832671  6.11976948  6.32235784
  6.44486207  6.50811191  6.54157432  6.57851213  6.65051904  6.7823289
  6.98775197  7.26740594  7.60861448  7.98748987  8.37285773  8.73137887
  9.03302681  9.25602105  9.39040558  9.43968456  9.42024665  9.35867239
  9.28736706  9.23923662  9.24228135  9.31499546  9.46332857  9.67970819
  9.94428385 10.2281885  10.49828128 10.72259244 10.87557591 10.94230645
 10.9209318  10.82297701 10.67145093 10.49706588 10.33319174 10.21037335
 10.15131209 10.1671361  10.25557197 10.40131825 10.57855941 10.75520731
 10.89817315 10.97880387]

创建新的解释变量样本 Xnew,进行预测和绘图

[6]:
x1n = np.linspace(20.5, 25, 10)
Xnew = np.column_stack((x1n, np.sin(x1n), (x1n - 5) ** 2))
Xnew = sm.add_constant(Xnew)
ynewpred = olsres.predict(Xnew)  # predict out of sample
print(ynewpred)
[10.96503747 10.81894524 10.56017815 10.23351824  9.89791447  9.61204991
  9.4199741   9.34031818  9.36173334  9.44566941]

绘制比较图

[7]:
import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax.plot(x1, y, "o", label="Data")
ax.plot(x1, y_true, "b-", label="True")
ax.plot(np.hstack((x1, x1n)), np.hstack((ypred, ynewpred)), "r", label="OLS prediction")
ax.legend(loc="best")
[7]:
<matplotlib.legend.Legend at 0x7f30514b3fd0>
../../../_images/examples_notebooks_generated_predict_12_1.png

使用公式进行预测

使用公式可以使估计和预测变得更加容易

[8]:
from statsmodels.formula.api import ols

data = {"x1": x1, "y": y}

res = ols("y ~ x1 + np.sin(x1) + I((x1-5)**2)", data=data).fit()

我们使用 I 来指示使用恒等变换。也就是说,我们不想使用 **2 进行任何扩展魔法

[9]:
res.params
[9]:
Intercept           5.030411
x1                  0.500216
np.sin(x1)          0.501093
I((x1 - 5) ** 2)   -0.020060
dtype: float64

现在我们只需要传递单个变量,就可以自动获得变换后的右手边变量

[10]:
res.predict(exog=dict(x1=x1n))
[10]:
0    10.965037
1    10.818945
2    10.560178
3    10.233518
4     9.897914
5     9.612050
6     9.419974
7     9.340318
8     9.361733
9     9.445669
dtype: float64

最后更新:2024 年 10 月 3 日