状态空间模型中的参数估计或指定

在本笔记本中,我们将展示如何在 statsmodels 的状态空间模型中固定某些参数的特定值,同时估计其他参数。

通常,状态空间模型允许用户

  1. 通过最大似然估计所有参数

  2. 固定一些参数并估计其余参数

  3. 固定所有参数(以便不估计任何参数)

[1]:
%matplotlib inline

from importlib import reload
import numpy as np
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt

from pandas_datareader.data import DataReader

为了说明,我们将使用服装的消费者价格指数,该指数具有随时间变化的水平和强烈的季节性成分。

[2]:
endog = DataReader('CPIAPPNS', 'fred', start='1980').asfreq('MS')
endog.plot(figsize=(15, 3));
../../../_images/examples_notebooks_generated_statespace_fixed_params_3_0.png

众所周知(例如,Harvey 和 Jaeger [1993]),HP 滤波器输出可以通过在参数上施加某些限制的非观测成分模型生成。

非观测成分模型为

\[\begin{split}\begin{aligned} y_t & = \mu_t + \varepsilon_t & \varepsilon_t \sim N(0, \sigma_\varepsilon^2) \\ \mu_t &= \mu_{t-1} + \beta_{t-1} + \eta_t & \eta_t \sim N(0, \sigma_\eta^2) \\ \beta_t &= \beta_{t-1} + \zeta_t & \zeta_t \sim N(0, \sigma_\zeta^2) \\ \end{aligned}\end{split}\]

为了使趋势与 HP 滤波器的输出相匹配,参数必须设置为如下所示

\[\begin{split}\begin{aligned} \frac{\sigma_\varepsilon^2}{\sigma_\zeta^2} & = \lambda \\ \sigma_\eta^2 & = 0 \end{aligned}\end{split}\]

其中 \(\lambda\) 是相关 HP 滤波器的参数。对于我们在此使用的月度数据,通常建议 \(\lambda = 129600\)

[3]:
# Run the HP filter with lambda = 129600
hp_cycle, hp_trend = sm.tsa.filters.hpfilter(endog, lamb=129600)

# The unobserved components model above is the local linear trend, or "lltrend", specification
mod = sm.tsa.UnobservedComponents(endog, 'lltrend')
print(mod.param_names)
['sigma2.irregular', 'sigma2.level', 'sigma2.trend']

非观测成分模型 (UCM) 的参数写为

  • \(\sigma_\varepsilon^2 = \text{sigma2.irregular}\)

  • \(\sigma_\eta^2 = \text{sigma2.level}\)

  • \(\sigma_\zeta^2 = \text{sigma2.trend}\)

为了满足上述限制,我们将设置 \((\sigma_\varepsilon^2, \sigma_\eta^2, \sigma_\zeta^2) = (1, 0, 1 / 129600)\)

由于我们在此固定所有参数,因此我们根本不需要使用 fit 方法,因为该方法用于执行最大似然估计。相反,我们可以直接使用 smooth 方法在选定的参数上运行卡尔曼滤波器和平滑器。

[4]:
res = mod.smooth([1., 0, 1. / 129600])
print(res.summary())
                        Unobserved Components Results
==============================================================================
Dep. Variable:               CPIAPPNS   No. Observations:                  536
Model:             local linear trend   Log Likelihood               -2997.309
Date:                Thu, 03 Oct 2024   AIC                           6000.619
Time:                        15:45:23   BIC                           6013.460
Sample:                    01-01-1980   HQIC                          6005.643
                         - 08-01-2024
Covariance Type:                  opg
====================================================================================
                       coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------------
sigma2.irregular     1.0000      0.009    115.621      0.000       0.983       1.017
sigma2.level              0      0.000          0      1.000      -0.000       0.000
sigma2.trend      7.716e-06   1.98e-07     38.962      0.000    7.33e-06     8.1e-06
===================================================================================
Ljung-Box (L1) (Q):                 254.28   Jarque-Bera (JB):                 1.58
Prob(Q):                              0.00   Prob(JB):                         0.45
Heteroskedasticity (H):               2.21   Skew:                             0.04
Prob(H) (two-sided):                  0.00   Kurtosis:                         2.75
===================================================================================

Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).

与 HP 滤波器趋势估计相对应的估计由 level 的平滑估计给出(在上述符号中为 \(\mu_t\)

[5]:
ucm_trend = pd.Series(res.level.smoothed, index=endog.index)

很容易看出,UCM 平滑水平的估计等于 HP 滤波器的输出

[6]:
fig, ax = plt.subplots(figsize=(15, 3))

ax.plot(hp_trend, label='HP estimate')
ax.plot(ucm_trend, label='UCM estimate')
ax.legend();
../../../_images/examples_notebooks_generated_statespace_fixed_params_11_0.png

添加季节性成分

然而,非观测成分模型比 HP 滤波器更灵活。例如,上面显示的数据显然具有季节性,但具有随时间变化的季节性效应(季节性在开始时比在结束时弱得多)。非观测成分框架的优势之一是我们可以添加随机季节性成分。在这种情况下,我们将通过最大似然估计季节性成分的方差,同时仍然包含上述参数的限制,以便趋势对应于 HP 滤波器概念。

添加随机季节性成分会增加一个新的参数,sigma2.seasonal

[7]:
# Construct a local linear trend model with a stochastic seasonal component of period 1 year
mod = sm.tsa.UnobservedComponents(endog, 'lltrend', seasonal=12, stochastic_seasonal=True)
print(mod.param_names)
['sigma2.irregular', 'sigma2.level', 'sigma2.trend', 'sigma2.seasonal']

在这种情况下,我们将继续像上面描述的那样限制前三个参数,但我们希望通过最大似然估计 sigma2.seasonal 的值。因此,我们将使用 fit 方法以及 fix_params 上下文管理器。

fix_params 方法接受参数名称和关联值的字典。在生成的上下文中,这些参数将在所有情况下使用。对于 fit 方法,只有未固定的参数将被估计。

[8]:
# Here we restrict the first three parameters to specific values
with mod.fix_params({'sigma2.irregular': 1, 'sigma2.level': 0, 'sigma2.trend': 1. / 129600}):
    # Now we fit any remaining parameters, which in this case
    # is just `sigma2.seasonal`
    res_restricted = mod.fit()
RUNNING THE L-BFGS-B CODE

           * * *

Machine precision = 2.220D-16
 N =            1     M =           10

At X0         0 variables are exactly at the bounds

At iterate    0    f=  3.87642D+00    |proj g|=  2.27476D-01

At iterate    5    f=  3.25868D+00    |proj g|=  2.20983D-06

           * * *

Tit   = total number of iterations
Tnf   = total number of function evaluations
Tnint = total number of segments explored during Cauchy searches
Skip  = number of BFGS updates skipped
Nact  = number of active bounds at final generalized Cauchy point
Projg = norm of the final projected gradient
F     = final function value

           * * *

   N    Tit     Tnf  Tnint  Skip  Nact     Projg        F
    1      5     12      1     0     0   2.210D-06   3.259D+00
  F =   3.2586810226319427

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL
 This problem is unconstrained.

或者,我们可以简单地使用 fit_constrained 方法,该方法也接受约束字典

[9]:
res_restricted = mod.fit_constrained({'sigma2.irregular': 1, 'sigma2.level': 0, 'sigma2.trend': 1. / 129600})
RUNNING THE L-BFGS-B CODE

           * * *

Machine precision = 2.220D-16
 N =            1     M =           10

At X0         0 variables are exactly at the bounds

At iterate    0    f=  3.87642D+00    |proj g|=  2.27476D-01

At iterate    5    f=  3.25868D+00    |proj g|=  2.20983D-06

           * * *

Tit   = total number of iterations
Tnf   = total number of function evaluations
Tnint = total number of segments explored during Cauchy searches
Skip  = number of BFGS updates skipped
Nact  = number of active bounds at final generalized Cauchy point
Projg = norm of the final projected gradient
F     = final function value

           * * *

   N    Tit     Tnf  Tnint  Skip  Nact     Projg        F
    1      5     12      1     0     0   2.210D-06   3.259D+00
  F =   3.2586810226319427

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL
 This problem is unconstrained.

摘要输出包括所有参数,但表明前三个是固定的(因此未被估计)。

[10]:
print(res_restricted.summary())
                            Unobserved Components Results
=====================================================================================
Dep. Variable:                      CPIAPPNS   No. Observations:                  536
Model:                    local linear trend   Log Likelihood               -1746.653
                   + stochastic seasonal(12)   AIC                           3495.306
Date:                       Thu, 03 Oct 2024   BIC                           3499.566
Time:                               15:45:24   HQIC                          3496.974
Sample:                           01-01-1980
                                - 08-01-2024
Covariance Type:                         opg
============================================================================================
                               coef    std err          z      P>|z|      [0.025      0.975]
--------------------------------------------------------------------------------------------
sigma2.irregular (fixed)     1.0000        nan        nan        nan         nan         nan
sigma2.level (fixed)              0        nan        nan        nan         nan         nan
sigma2.trend (fixed)      7.716e-06        nan        nan        nan         nan         nan
sigma2.seasonal              0.0924      0.007     12.672      0.000       0.078       0.107
===================================================================================
Ljung-Box (L1) (Q):                 459.85   Jarque-Bera (JB):                38.49
Prob(Q):                              0.00   Prob(JB):                         0.00
Heteroskedasticity (H):               2.44   Skew:                             0.30
Prob(H) (two-sided):                  0.00   Kurtosis:                         4.19
===================================================================================

Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).

为了比较,我们构建了不受约束的最大似然估计 (MLE)。在这种情况下,水平的估计将不再对应于 HP 滤波器概念。

[11]:
res_unrestricted = mod.fit()
RUNNING THE L-BFGS-B CODE

           * * *

Machine precision = 2.220D-16
 N =            4     M =           10

At X0         0 variables are exactly at the bounds

At iterate    0    f=  3.63596D+00    |proj g|=  1.07339D-01
 This problem is unconstrained.
At iterate    5    f=  2.03169D+00    |proj g|=  4.05225D-01
  ys=-5.696E-01  -gs= 2.818E-01 BFGS update SKIPPED

At iterate   10    f=  1.59907D+00    |proj g|=  7.62230D-01

At iterate   15    f=  1.44540D+00    |proj g|=  2.77893D-01

At iterate   20    f=  1.39111D+00    |proj g|=  1.56723D-01

At iterate   25    f=  1.38688D+00    |proj g|=  1.41002D-03

           * * *

Tit   = total number of iterations
Tnf   = total number of function evaluations
Tnint = total number of segments explored during Cauchy searches
Skip  = number of BFGS updates skipped
Nact  = number of active bounds at final generalized Cauchy point
Projg = norm of the final projected gradient
F     = final function value

           * * *

   N    Tit     Tnf  Tnint  Skip  Nact     Projg        F
    4     28     58      1     1     0   2.548D-06   1.387D+00
  F =   1.3868826049230436

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL

最后,我们可以检索趋势和季节性成分的平滑估计。

[12]:
# Construct the smoothed level estimates
unrestricted_trend = pd.Series(res_unrestricted.level.smoothed, index=endog.index)
restricted_trend = pd.Series(res_restricted.level.smoothed, index=endog.index)

# Construct the smoothed estimates of the seasonal pattern
unrestricted_seasonal = pd.Series(res_unrestricted.seasonal.smoothed, index=endog.index)
restricted_seasonal = pd.Series(res_restricted.seasonal.smoothed, index=endog.index)

比较估计的水平,很明显,具有固定参数的季节性 UCM 仍然产生一个趋势,该趋势非常接近(虽然不再完全相同)HP 滤波器输出。

同时,来自没有参数限制的模型(MLE 模型)的估计水平比这些水平要平滑得多。

[13]:
fig, ax = plt.subplots(figsize=(15, 3))

ax.plot(unrestricted_trend, label='MLE, with seasonal')
ax.plot(restricted_trend, label='Fixed parameters, with seasonal')
ax.plot(hp_trend, label='HP filter, no seasonal')
ax.legend();
../../../_images/examples_notebooks_generated_statespace_fixed_params_26_0.png

最后,具有参数限制的 UCM 仍然能够很好地捕捉到随时间变化的季节性成分。

[14]:
fig, ax = plt.subplots(figsize=(15, 3))

ax.plot(unrestricted_seasonal, label='MLE')
ax.plot(restricted_seasonal, label='Fixed parameters')
ax.legend();
../../../_images/examples_notebooks_generated_statespace_fixed_params_28_0.png

上次更新:2024 年 10 月 3 日